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a b s t r a c t

Foraminiferal assemblages from a SantonianeCampanian submarine fan system in the northwestern
Vøring Basin, offshore Norway were investigated with the primary objectives to document the strati-
graphic ranges of foraminiferal taxa calibrated with dinoflagellate cysts, and to interpret foraminiferal
biofacies of different fan sub-environments previously proposed based on the analysis of ichnofossils.
The assemblages are composed of deep-water agglutinated foraminifera (DWAF) without carbonate-
cemented taxa. DWAF taxa of high biostratigraphic value are absent, but the complete agglutinated
nature of the assemblages and the presence of Gerochammina stanislawi and Rectogerochammina eugu-
bina are similar to those of the lower Campanian Fenestrella bellii Zone of the Norwegian Sea. More
reliable dating was provided by palynology, and the age of the interval is estimated to be Santonian to
Campanian.

The inner to middle fan assemblages contain small numbers of specimens, and consequently the
species diversity and relative abundance of morphogroups are inconsistent. Deep infaunal forms may be
more common in this sub-environment, but because the abundance is low, this observation should be
treated carefully. In contrast, the abundance and diversity of the assemblages of the overbank, fringe and
basin plain sub-environments are fairly high. Their morphogroup composition is also similar and com-
parable to each other when the assemblage size is large. The assemblage from the interval with sug-
gested hydrothermal activity is similar to those from outside the channel sub-environment. The presence
of bottom water currents, possibly in the form of a western boundary current, in the basin is suggested
based on the abundant occurrence of tubular forms in the overbank, fringe, and basin plain sub-
environments.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The NorwegianeGreenland Sea was a narrow epicontinental
seaway during the Late Cretaceous (Fig. 1), and it existed as
a strait until the break-up of the continental crust and the con-
sequent opening of the North Atlantic Ocean around the
PalaeoceneeEocene transition (Faleide et al., 2008). Prior to the
break-up, the area was tectonically active in association with Late

CretaceousePalaeocene rifting events, and submarine fan systems
developed in the Vøring Basin in the Late Cretaceous (e.g. Kittilsen
et al., 1999; Fjellanger et al., 2005).

Some studies have been published on Upper Cretaceous dino-
cysts from East Greenland (e.g. Kelly et al., 1998; Nøhr-Hansen,
2012) and offshore Norway (Gradstein et al., 1999; Williams et al.,
2005), whereas with respect to Upper Cretaceous foraminifera
from these areas Gradstein et al. (1999) is the only published work
to date which established a quantitative biostratigraphy based
mainly on foraminifera and dinoflagellate cysts for the whole Cre-
taceous of the NorwegianeGreenland seaway and reconstructed
the palaeobathymetric and palaeoceanographic history of offshore
mid-Norway. Recently, Knaust (2009) analysed ichnofossils in the
Upper Cretaceous from well 6707/10-1 drilled in the Vøring Basin
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and recognised seven ichnofabric types related to different sub-
environments within a Campanian submarine fan system.

The objectives of this study are to describe the stratigraphic
distribution of foraminifera from well 6707/10-1 drilled in the
Vøring Basin calibrated with bioevents of dinoflagellate cysts, and

to interpret palaeobathymetric conditions and possible foramini-
feral biofacies within a submarine fan system using morphogroup
analysis of agglutinated foraminiferal assemblages. The results
of the analysis are compared with the palaeoenvironmental inter-
pretation of the same interval based on ichnofossils by Knaust
(2009).

2. Geological setting

2.1. Background geology

Well 6707/10-1 was drilled on the Nyk High, located in the
northwestern part of the Vøring Basin (Fig. 2). The basin started to
develop as a result of thermal subsidence after the late Middle
JurassiceEarly Cretaceous rifting episode, while the Nyk High was
still part of a basinal area north of the Sur Lineament until the
Maastrichtian when its formation initiated (Blystad et al., 1995;
Brekke, 2000; Ren et al., 2003). A thick, predominantly sandy
Campanian unit in well 6707/10-1 is interpreted as turbidites
deposited within a submarine fan system (Kittilsen et al., 1999;
Fjellanger et al., 2005; Martinsen et al., 2005; Lien, 2005), and
provenance studies suggested East Greenland as the sediment
source to the CampanianePalaeocene succession in the Vøring
Basin (Fonneland et al., 2004; Morton et al., 2005). A detailed ich-
nofabric study by Knaust (2009) distinguished seven sub-
environments within the Campanian submarine fan system.

A rapid deepening of the northwest Vøring Basin in the Cam-
panian, following much slower deepening since the Turonian, was
suggested with bathymetry changing from deep neritic (150e
250 m) in TuronianeSantonian time to upper bathyal (250e
500 m) in the earlyemiddle Campanian (Ren et al., 2003). These
authors related the early Campanian deepening of the Vøring Basin
to the initial subsidence due to extension of the lithosphere in the
Late CretaceousePalaeocene rift episode that probably began in the
middle Campanian. The area around the Nyk High was uplifted

Figure 1. Palaeogeographic reconstruction of the NorwegianeGreenland Seaway and
its surrounding areas for the TuronianeCampanian (modified after Ziegler, 1988).

Figure 2. Study area map. GB: Greenland Basin, JMFZ: Jan Mayen Fracture Zone, MB: Møre Basin, LB: Lofoten Basin, TP: Trøndelag Platform, VB: Vøring Basin. Large map modified
after Blystad et al. (1995) and small map after Mosar et al. (2002).
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since the early Maastrichtian resulting in the late Maastrichtiane
Early Palaeocene hiatus on intra-basinal highs (Ren et al., 2003).

2.2. Lithostratigraphy

The Upper Cretaceous unit recovered from well 6707/10-1
contains four formations of the Shetland Group (Fig. 3). The
description of the three youngest formations is summarised below
following Gradstein et al. (2010) and the Norwegian Interactive
Offshore Stratigraphic Lexicon (NORLEX) website (http://nhm2.uio.
no/norges/litho/overview_cretaceous.php). The Coniacianeupper
Santonian Kvitnos Formation is composed mainly of grey and
greyish green calcareous claystones, and the Tumler Member in the
upper part of the formation consists of sandstones and thin mud-
stone interbeds. This member is equivalent to the lower part of the
Delfin formation used on the Norwegian Petroleum Directorate
Factpages (http://factpages.npd.no/factpages/default.aspx). The
overlying uppermost Santonianemiddle Campanian Nise Forma-
tion is grey and greyish green claystones with carbonate and
sandstone interbeds, and the Spekkhogger Member, equivalent to
the upper part of the Delfin formation, is composed dominantly of
thick sandstones. The Springar Formation is predominantly com-
prised of greyish green mudstones interbedded by carbonates and
sandstones, and ranges in age from the early Campanian to the late
Maastrichtian. The Kvitnos Formation is considered as the post-rift
sediments of the late Mid-Jurassiceearliest Cretaceous rift episode,
while the Nise Formation was deposited during the transition be-
tween the post-rift period and the latest CretaceousePalaeocene
rift episode, and the Springar Formation in the syn-rift period
(Færseth and Lien, 2002; Lien, 2005). The value of total organic
carbon (TOC) varies between 0.35% and 2.76% in the interval con-
sidered in this study with an exception at 3002 m (15.62%).

2.3. Previous micropalaeontological studies

The area has been intensively investigated by petroleum com-
panies, and Gradstein et al. (1999) established a quantitative

Cretaceous biostratigraphy with 19 assemblage and interval zones
based on foraminifera, dinoflagellates and diatoms from over 30
industrial wells in the area between 60�N and 66�N offshore Nor-
way. Their findings include the dominance of agglutinated fora-
minifera in the upper middleelower upper Albian and the middlee
upper Campanian that is interpreted as reflecting basin-wide dys-
aerobic conditions caused by a lowering sea level and restricted
basinal areas, and the episodic floods of planktonic foraminifera in
late Albianeearly Cenomanian, earlyemiddle Turonian, late
Santonianeearliest Campanian and mid-Maastrichtian times that
they attributed to northwards shifts of warmer water masses and
disruptions in water stratification in dysaerobic basins. These al-
ternations of the calcareous-dominant and agglutinated-dominant
assemblages are also known from the Cretaceous of the northern
North Sea (King et al., 1989; van den Akker et al., 2000, 2002), and
King et al. (1989) related these faunal changes to restricted and
open circulation in the North Sea Basin.

Upper Cretaceous dinocyst assemblages of the Vøring Basin
have been previously analysed by Gradstein et al. (1999) and
Williams et al. (2005), though the former did not include data from
well 6707/10-1, and the latter analysed palynological assemblages
from the same well, but with a focus on a non-acid preparation
method. More detailed taxonomic and biostratigraphic studies on
Upper Cretaceous dinocysts from northeast Greenland, which was
located adjacent to the Vøring Basin, have been published (e.g.
Kelly et al., 1998; Nøhr-Hansen, 1993, 2012), but according to these
authors, the presence of the Campanian in their studied areas is
questionable.

3. Materials and methods

3.1. Materials

Foraminifera were examined in 23 picked faunal slides from the
interval between 2971.20 m and 4137.95 m in well 6707/10-1
provided by F.M. Gradstein. Foraminiferal specimens were extrac-
ted from core samples. Preparationmethods, sample size, and sieve
size following standard industrial techniques. The sampling depth
of sample 17 is not given, but it is included in the study as the other
samples are properly numbered in order according to depth.
Samples 18 and 19 were collected at the same depth, 2991.20 m,
and they are separately treated. In addition to the analysis of for-
aminifera, 17 palynological slides from the interval between 2410m
and 4119.50 m were analysed for dinocysts for a stratigraphic
purpose. The palynological slides were prepared from ditch-cutting
samples by different laboratories and provided by the Norwegian
Petroleum Directorate. They were treated with standard acid
digestion (HCl and HF digestion). All the palynological slides were
studied under Zeiss Axioscope 50.

3.2. Foraminiferal morphogroup analysis

Morphogroup analysis has been developed in an attempt to
semiquantitatively study palaeoenvironmental and palae-
obathymetric changes reflected by foraminiferal assemblages
(Corliss, 1985; Jones and Charnock, 1985; Corliss and Chen, 1988).
This technique has been applied in both deep and shallow water
settings with agglutinated and calcareous benthic foraminifera (e.g.
Koutsoukos and Hart, 1990; Nagy et al., 1995, 2009; Murray et al.,
2011). The morphogroup analysis is based on the idea of func-
tional morphology, and it assumes that species with different test
shapes have different preferred life habitats, which can be related
to feeding strategies, and that changes in the relative abundance of
morphogroups in assemblages reflect environmental changes
through time (Corliss, 1985; Jones and Charnock, 1985; Murray
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Figure 3. Lithostratigraphy for the Upper Cretaceous and Palaeocene of the northern
Norwegian Sea (modified after NORLEX, 2011).
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et al., 2011). Jones and Charnock (1985) devised a morphogroup
scheme for agglutinated foraminifera which has been modified and
applied to fossil agglutinated assemblages for palaeoecological
study by subsequent authors (e.g. Bąk et al., 1997; Peryt et al., 1997,
2004; van den Akker et al., 2000; Kender et al., 2009). The agglu-
tinated foraminiferal morphogroup scheme used in this study is
after Cetean et al. (2011), which is modified for the study of Upper
Cretaceous deep-water agglutinated foraminiferal (DWAF) assem-
blages (Fig. 4).

3.3. Measurement of tubular forms

For the morphogroup analysis, each tubular fragment is counted
as one specimen following previous studies (e.g. Nagy et al., 1995;
Cetean et al., 2011). Additionally, the cumulative length of tubular
forms was measured following Kaminski and Kuhnt (1995) in an
attempt to quantify fragmented specimens. The cumulative length
was plotted against the total number of tubular specimens to test
whether tubular specimens in different samples were fragmented
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to a similar degree. The cumulative length was then standardised in
sample size (100 specimens of all agglutinated foraminifera per
sample) to allowa comparison of assemblages of different sizes (see
Setoyama et al., 2011b).

3.4. Diversity index

In addition to species richness (the total number of species),
Fisher alpha index (Fisher, 1943) was calculated as a measure of
species diversity in this study. This diversity index is thought to be
relatively less sensitive to variations in assemblage size (Magurran,
2004), which makes a comparison of species diversity between
assemblages of variable sizes more reliable. The values of Fisher
alpha index were calculated using the PAST (version 2.14) software
(Hammer et al., 2001; Hammer and Harper, 2006).

4. Results

4.1. Foraminiferal assemblages

The foraminiferal assemblages from the studied interval are
completely devoid of calcareous foraminifera. No casts or broken
pieces of calcareous benthic or planktonic foraminifera are recor-
ded. Similarly, carbonate-cemented agglutinated foraminifera are
absent in the assemblages. Flattened specimens are very frequent,
and glauconite and pyrite infillings are very rare (see Fig. 5). Typical
Upper Cretaceous taxa of the “flysch-type” fauna (sensu Gradstein
and Berggren, 1981; Kaminski and Gradstein, 2005) constitute the
assemblages, including species of Arthrodendron, Caudammina,
Gerochammina, Nothia, Psammosiphonella and Subreophax (see
Figs. 5 and 6).

Assuming that all the core samples are of the same size, the
number of specimens and the value of species diversity are very
variable (Fig. 7). The number of specimens varies between 1 in
sample 32 and 418 in sample 23. The value of Fisher alpha index is
between 0 in sample 32 and 13.51 in sample 25. Relatively high
numbers of specimens and diversity are recorded for six samples
from the interval between 3093.02m and 3016.05m, interpreted to
represent the overbank settings and the sub-environment with
a hydrothermal vent by Knaust (2009). In contrast, the number of
specimens per assemblage is low in samples from sections inter-
preted as the inner to middle fan with amalgamated channels
represented by massive sands and the middle to outer fan with
lobate sheets by Knaust (2009), except for sample 16 (Fig. 7).

4.2. Biostratigraphy

The interval considered in this study is regarded as of
SantonianeCampanian age by previous studies (Ren et al., 2003;
Fjellanger et al., 2005; Knaust, 2009). Important index species of
DWAF for this time period, such as Caudammina gigantea and
Uvigerinammina jankoi, are, however, not recorded (Fig. 6). The
taxonomic composition and the completely agglutinated nature of
the foraminiferal assemblages are similar to those of the lower
Campanian diatom Fenestrella bellii Zone of Gradstein et al. (1999)
assuming that forms identified as Karrerulina conversa and Gau-
dryina filiformis in their study are Gerochammina stanislawi and
Gerochammina lenis. The assemblages differ from the middlee
upper Campanian Tritaxia dubia Zone of Gradstein et al. (1999) by
the absence of the nominal species and carbonate-cemented
agglutinated taxa, though the absence of these carbonate-
cemented taxa can be related to their ecological preferences and/
or early diagenesis dissolution.

In contrast to agglutinated foraminifera, several stratigraphically
useful bioevents were identified among the dinoflagellate cysts

(Fig. 6). Several of these events can be correlated with those in the
southwestern Barents Sea (Radmacher, personal observation), the
North Sea (Costa and Davey, 1992), West Greenland (Nøhr-Hansen,
1996; Dam et al., 2000), East Greenland (Nøhr-Hansen, 2012) and
the Scotian Margin (Fensome et al., 2009).

The presence of Heterosphaeridium cf. H. difficile together with
Dinopterygium alatum recorded at a depth of 4119.50 m suggests
that the interval below is not younger than the early Santonian. The
LO of Heterosphaeridium cf. H. difficile has been recorded in the
Santonian of the Scotian Margin (Fensome et al., 2009) and the
lower Santonian of West Greenland (Nøhr-Hansen, 1996). The
species has also been reported from the same time interval in the
Scotian Margin (Fensome et al., 2008) and in the North Sea (Costa
and Davey, 1992). The LO of D. alatum was recorded in the (?)
lowermost Santonian in West Greenland (Nøhr-Hansen, 1996,
2012), as well as in the lowermost Santonian of the North Sea by
Costa and Davey (1992). Additionally, the first occurrence (FO) of
Raphidodinium fucatum, at 4119.50 m in this study, was recorded
from the upper Coniacian by Costa and Davey (1992) and from the
middle Turonian (Nøhr-Hansen, 2012) suggesting that the interval
below 4119.50 m is not younger than the early Santonian and not
older than the middle Turonian.

The LOs of Trithyrodinium suspectum and R. fucatum are recorded
at 2967.46 m. The LO of R. fucatum suggests a late Campanian age,
according to the NORLEX biozonation for the Norwegian Sea
(http://nhm2.uio.no/norlex/), and the LO of T. suspectum suggests
a late Campanian age according toWilliams et al. (2004). The LOs of
species, such as Odontochitina spp. and Trichodinium castanea, the
common occurrence of Spongodinium delitiense and the abundant
occurrence of Heterosphaeridium sp. at 2967.20 m suggest an age
not younger than late Campanian. The LO of Desmocysta plekta (at
the same depth of 2967.20 m) also suggests a late Campanian age
(Radmacher, personal observations) and confirms the late Campa-
nian age estimate for this depth (Fig. 6). Additionally, the dinocyst
assemblage recorded at a depth of 2969.18 m including Odonto-
chitina operculata and Palaeohystrichophora infusorioides together
with T. castanea and Laciniadinium arcticum, suggest a late Cam-
panian age.

4.3. Quantification of foraminiferal tubular forms

The contribution by different tubular forms varies from one
sample to another (Fig. 7). The number of tubular specimens (M1)
and their cumulative length are compared to assess whether frag-
mentation of M1 specimens occurred at similar degrees and if
a comparison of the relative abundance of M1 is reasonable in this
study. The correlation between the total number of M1 specimens
and the cumulative length of M1 specimens (R2 ¼ 0.924) is not as
high as for the Upper Cretaceous assemblages of the SW Barents
Sea (R2 ¼ 0.949) (Setoyama et al., 2011b) (Fig. 8). Sample 25 is
clearly an outlier with a longer average tube length and the median
for the length of specimens and a larger standard deviation. When
it is removed from the data set, the correlation improves
(R2 ¼ 0.959). In this sample, Psammosiphonella is the main con-
stituent (Fig. 7). Psammosiphonella has a thick-walled test in com-
parison to other tubular forms, such as Rhizammina and
Tolypammina, and this may be the cause of a large deviation of the
sample fromothers as thick-walled tests would bemore resistant to
mechanical breakage, and consequently broken tubular pieces
would be longer. Although general trends in the relative abundance
and the standardised tube length of M1 through the interval are
generally similar, some assemblages are so small that the relative
abundance and the length of M1 are either extremely over-
estimated or underestimated (Fig. 7). For example, the peak of the
standardised tube length and the complete domination of the

E. Setoyama et al. / Marine and Petroleum Geology 43 (2013) 396e408400



Author's personal copy

Figure 5. Photographs of selected foraminiferal and dinoflagellate cyst species fromwell 6707/10-1. All scale bars are 100 mm for foraminifera and 20 mm for dinocysts and a pollen,
except for number 16. 1. Bathysiphon nodosariaformis, 3016.50 m. 2. Nothia excelsa, 3126.99 m. 3. Nothia sp. 1, 3093.02 m. 4. Nothia sp. 2, 3021.75 m, a) dry, b) in immersion. 5.
Psammosiphonella cylindrica, 3059.20 m. 6. Psammosiphonella discreta, 3,059.20 m. 7. Rhizammina spp., 2974.70 m. 8. Placentammina placenta, 3022.20 m. 9. Hyperammina rugosa,
3141.50 m. 10. Saccorhiza sp. 1, 3021.75 m. 11. Tolypammina sp. 1, 3141.50 m. 12. Tolypammina sp. 1, 3141.50 m. 13. Caudammina ovula, 3022.20 m. 14. Subreophax scalaris, 3059.20 m.
15. Subreophax longicameratus, 3141.50 m. 16. Arthrodendron diffusum, 3059.20 m. 17. Arthrodendron grandis, 3022.20 m. 18. Kalamopsis grzybowskii, 3016.05 m. 19. Plectoeratidus
subarcticus, 2971.82 m. 20. Rectogerochammina eugubina, 3016.50 m. a) and b) in immersion. 21. Odontochitina operculata, 2969.18 m. 22. Desmocysta plekta, 2969.18 m. 23.
Raphidodinium fucatum, 2969.18 m. 24. Trithyrodinium suspectum, 2967.46 m. 25. Isabelidinium microarmum, 2969.18 m. 26. Laciniadinium arcticum, 2969.18 m. 27. Chatangiella
ditissima, 2969.18 m. 28. Oligosphaeridium pulcherrimum, 3059.96 m. 29. Aquilapollenites sp., 2989.30 m.
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Figure 6. Relative abundance of selected agglutinated foraminifera taxa and dinocyst bioevents.
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Figure 7. Lithology, sub-environments in a submarine fan system, diversity measures, standardised tube length and morphogroups (lithology and sub-environment interpretation from Knaust, 2009). Tu: Tumler; n/a: not available.
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assemblage by M1 in sample 37 are due to the small sample size of
the assemblage which contains only four relatively long specimens
of Nothia, Psammosiphonella and Rhabdammina.

4.4. Foraminiferal morphogroups

All the morphogroups (M1eM4) are present in the assemblages,
except for some samples which contain less than 30 specimens
(Fig. 7). The exceptionally high abundance of M1 in samples 37 and
41, of M2a in sample 29 and of M2b in samples 9, 30 and 32 are
most likely related to the small number of specimens in the as-
semblages. Apart from some of the samples mentioned above and
samples 18 and 19, M1 (tubular forms) is the dominant component
of the assemblages. M2 (epifauna/shallow infauna) is usually a mi-
nor component of assemblages, and the slightly elevated abun-
dance of M2a in samples 22 and 23 is related to the increased
occurrence of Placentammina placenta and Saccammina grzybowskii.
M3 (epifauna) is sometimes a common component of the assem-
blages and its abundance varies between 0 and 21%. M3b (sessile
forms), represented by Ammolagena contorta in this well, is recor-
ded in sample 22. The genus Tolypammina, an attached form by its
taxonomic definition, is included in M1 in this study as most of
fragmented specimens are found as free forms. If Tolypammina is
shifted from M1 to M3b, M3b becomes the dominant group in
samples 33 and 36, and M4b (deep infauna) is the dominant mor-
photype in samples 21. M4 (infauna) is present in most of the
samples, and dominates the assemblages in samples 18 and 19.
M4b (elongate forms) is more abundant than M4a (lituolids) with
exceptions in samples 11 and 14, and the species of Gerochammina
are the main component of M4b in this study.

5. Discussion

5.1. Palaeoenvironments

Results of quantitative analyses of the foraminiferal assemblages
and the palaeoenvironmental interpretation of the same interval
based on the ichnofabric analysis by Knaust (2009) (Fig. 9) are
compared here. The foraminiferal assemblages in the sandy amal-
gamated channels of the inner to middle fan are generally less
abundant. The diversity and the relative abundance of mor-
phogroups vary among this assemblage, and they may contain
moreM4b (deep infauna) (samples 18 and 19 in Fig. 7) than those of
other submarine fan environments as reported for the channel-axis
assemblage of Jones et al. (2005). The number of specimens in these
assemblages are, however, too small to conclude on this point for
certain. The foraminiferal assemblages from the overbank samples
are more consistent in terms of the number of species and the value
of Fisher alpha index, but not clearly different from the fringe and
basin plain assemblages. The assemblage composition of proximal
and overbank environments are similar, but the latter may contain
moreM4b (deep infauna). The composition of the lobate sand sheet
assemblages is similar to the overbank when the assemblages are
large. The highest diversity expressed by Fisher alpha index is
recorded in sample 25, which is within the interval with possible
hydrothermal vent activity suggested by Knaust (2009). Recent and
fossil foraminiferal assemblages in an area under the influence of
a hydrothermal vent are usually dominated by agglutinated fora-
minifera and less diversified and contain either less or distinctly
more individuals compared to surrounding areas with normal
marine conditions (Nienstedt and Arnold, 1988; Jonasson et al.,
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1995; Panieri et al., 2005; Tyszka et al., 2010). However, the
abundance and the composition of assemblages in such areas are
also considerably variable due to highly localised environmental
conditions (Jonasson et al., 1995; Panieri et al., 2005). The compo-
nent taxa, their abundance and the diversity of the foraminiferal
assemblage in sample 25 do not remarkably differ from the over-
bank, fringe, and basin floor samples (Fig. 7), and the complete
absence of calcareous foraminifera is consistent in all the samples
considered in this study. If there had been hydrothermal activity in
the area, the foraminiferal assemblagemight have been established
either in a patch with local conditions very close to normal marine
or during a time period when the vent activity was temporarily
ceased. It is also possible that the foraminiferal assemblage is older
than the vent activity.

5.2. Palaeocurrents and palaeobathymetry

Abundant occurrences of fragments of tubular taxa are reported
from recent ocean slopes or deeper settings with bottom water
currents which carry and/or resuspend organic matter making
them available for suspension feeding epifauna (e.g. Kaminski,
1985; Jones and Charnock, 1989; Kuhnt and Collins, 1995;
Schönfeld, 1997). M1 (tubular forms) is commonly present in most
samples in this study, including the basin plain and overbank sub-
environments of Knaust (2009), which were probably not under
the influence of currents thorough channels within a submarine fan
system. The abundant occurrence of tubular forms outside the
channel sub-environment, thus, may indicate the presence of
gentle bottom water currents in the basin possibly in the form of
a western boundary current.

A bathyal environment can be inferred from the abundant
occurrence of tubular forms (see Jones and Charnock, 1985; Murray
et al., 2011) as well as the dominant deep-water agglutinated

foraminifera in the assemblages, and this agrees with the middlee
upper bathyal palaeobathymetric estimation by Gradstein et al.
(1999) and Ren et al. (2003). It is difficult to estimate the palae-
obathymetry at the subzone level with the assemblages of well
6707/10-1 because no foraminiferal taxa useful for more specific
palaeobathymetric estimation were recorded. The absence of C.
gigantea might suggest the palaeobathymetry of the site to have
been shallower than loweremiddle bathyal (Kuhnt et al., 1998;
Gradstein et al., 1999) as the known geographic limit of this species
is further north in the SW Barents Sea (Setoyama et al., 2011a). The
value of the Fisher alpha index is lower for the studied assemblages
of well 6707/10-1 than for more or less contemporaneous assem-
blages of the SW Barents Sea. While turbiditic conditions within
a submarine fan system may account for this reduced diversity in
the NWVøring Basin as the faunamay have not reached the highest
possible diversity for similar environments with more stable sub-
strates (see Hess et al., 2005), it may also reflect a shallower
palaeobathymetry of the area because the foraminiferal assem-
blages from basinal plain and fan fringe palaeoenvironments sug-
gested by Knaust (2009) are still less diversifiedwhere assemblages
are usually more diversified than in a channel-axis or off-axis
environment (Jones et al., 2005). In addition, the composition of
the assemblages with all themorphogroups and a fair abundance of
M4b (deep infauna), except for those associated with amalgamated
channels and lobate sheets, indicates stable conditions, at least for
the timewhen the assemblages were established (see Jorissen et al.,
1994; Hess et al., 2005; Hess and Jorissen, 2009).

5.3. Oxygenation

Campanian deep-water faunas dominated by agglutinated for-
aminifera have been reported from the Viking Graben (King et al.,
1989), the Foula Sub-Basin (van den Akker et al., 2000, 2002) and

Inner fan
Mid fan channelised
suprafan lobe

Outer fan

Basin plain

East Greeland shelf

fan fringe & basin plain
● Abundance variable
● Diversity variable, 
   generally high
● M1 abundant 
● M4 common

inner to middle fan with
amalgamated sands
● Abundance generally low
● Diversity can be high
● M1 relatively less abundant
● M4 relatively abundant
● High dominance 
→ Reworked assemblages(?)
● Shorter standardised tube length

overbank proximal
● Abundance high
● Diversity generally high
● M1 abundant 
● M4b abundant

overbank distal
● Abundance high
● Diversity slightly lower than 
   overbank proximal settings
● M1 abundant 
● M4 more abundant 
   than in proximal environments

middle to outer fan with
lobate sheets
● Abundance variable
● Diversity comparable to other 
   middle to outer fan settings
● M1 abundant
● M4 common

Figure 9. Foraminiferal biofacies in sub-environments of a Campanian submarine fan system suggested by Knaust (2009). The arrow indicates the presence of bottom water
currents possibly in a form of a western boundary current. The block model is modified after Reading and Richards (1994) and Knaust (2009).
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offshore Norway (Gradstein et al., 1999) in the northern high-
latitude areas. The dominance of agglutinated foraminifera was
related to restricted water circulation in semi-enclosed basins,
resultant poor oxygenation and low pH environments at the sea
floor by King et al. (1989) and Gradstein et al. (1999), whereas van
den Akker et al. (2000) concluded that the bottom water was well
oxygenated, and dysaerobic bottomwater conditions were unlikely
in the Foula Sub-Basin based on the lowabundance ofM4 (infauna).
The foraminiferal assemblages of well 6707/10-1 contain all the
morphogroups, except for those associated with sandy deposists of
amalgamated channels and lobate sheets, and M4b (deep infauna)
is common, but not dominant when the assemblages are large.
These features are similar to that of modern agglutinated assem-
blages in oxygenated deep sea settings (Jones and Charnock, 1985;
Murray et al., 2011). A comparison of the morphogroup composi-
tion of the assemblages with the TROX (TRophic conditions and
OXygen concentration) model (Jorissen et al., 1995) and other
ecological models (Kaminski et al., 1995; Kuhnt et al., 1996; Van der
Zwaan et al., 1999) also suggests a relatively well oxygenated
environment with a moderate flux of organic carbon which is also
in accordance with the values of TOC. There is no domination by
particular species that are known to be tolerant to low oxygen
conditions, although it is still possible that all DWAF taxa found in
the assemblages are tolerant to consistent dysoxia depending on its
degree. Nevertheless, it is likely that bottom water oxygen con-
centration was not particularly low, and the flux of organic carbon
was moderate in the NW Vøring Basin during the Santoniane
Campanian.

Some calcareous benthic foraminifera are known to be tolerant
to consistent low oxygen conditions in the recent (Bernhard, 1986;
Kaiho, 1999; Gooday et al., 2000; Szarek et al., 2007) and in Cre-
taceous times (Koutsoukos and Hart, 1990; Widmark and Speijer,
1997; Gebhardt et al., 2010), and live in areas below the calcium
carbonate compensation depth (CCD) (Cornelius and Gooday,
2004). As discussed above, it is not likely that oxygen was limited
in bottomwater or organic flux to the sea floor was neither low nor
very high. It can be assumed that this area was probably above the
regional CCD in SantonianeCampanian times because some calca-
reous foraminiferawere recorded from deeper environments in the
SW Barents Sea (Setoyama et al., 2011a) and in other boreholes
offshore Norway (Gradstein et al., 1999). The original foraminiferal
assemblages were probably dominated by agglutinated taxa that
are characteristic of fossil assemblages associated with turbiditic
conditions (Gradstein and Berggren, 1981) and in the Late Creta-
ceous deep-water environments in the northern high latitudes (see
Kuhnt et al., 1989). Additionally, the early diagenetic dissolution of
relatively rare calcareous taxa may have led to their complete loss
from foraminiferal assemblages of well 6707/10-1.

6. Conclusions

� The agglutinated nature of the assemblages, the presence of G.
stanislawi and Rectogerochammina eugubina and the absence of
T. dubia are similar to those of the lower Campanian F. bellii
Zone of Gradstein et al. (1999). Because the foraminiferal as-
semblages lack species of high biostratigraphic value including
the carbonate-cemented T. dubia, the age of the top of the in-
terval studied could not be determined. The LOs of dino-
flagellate cysts, such as Odontochitina spp., T. suspectum, R.
fucatum, D. alatum and Heteresphaeridium cf. H. difficile, gave
a better stratigraphic age estimate suggesting an early Santo-
nian to late Campanian age for the studied interval.

� A comparison of foraminiferal assemblages and the results of
ichnofabric analysis by Knaust (2009) shows that the inner to
middle fan assemblages of amalgamated channels are

generally poor and may contain more infaunal forms, as sug-
gested by Jones et al. (2005) for the channel-axis assemblages,
but with small numbers of specimens this observation cannot
be confirmed for certain. The foraminiferal assemblages of the
overbank, fringe and basin plain environments generally con-
tain fairly high numbers of specimens, and the diversity of the
assemblages is comparable to each other. The morphogroup
analysis of the assemblages shows similar results for these
assemblages where the assemblage size is large. The fora-
miniferal assemblage from the interval with suggested hydro-
thermal vent activity (Sample 25) has the highest diversity, and
its taxonomic composition is very similar to the other assem-
blages indicating the assemblage was possibly established in
a patch with a normal marine environment or when the vent
activity was temporally ceased if the vent had existed at all.

� The abundant occurrence of tubular forms and DWAF taxa
supports the middleeupper bathyal palaeobathymetric esti-
mation by Gradstein et al. (1999) and Ren et al. (2003). The
lower value of Fisher alpha index of the assemblages of over-
bank, fringe, and basin plain environments than that of more or
less contemporaneous foraminiferal fauna of the SW Barents
Sea may indicate a shallower upper bathyal setting. The pres-
ence of all the morphogroups in the assemblages and a mod-
erate abundance of M4 (infauna) suggest a mesotrophic
environment with bottom water oxygen level which was not
too low to inhibit diversity.

� The abundant occurrence of suspension feeding tubular forms
outside the channel sub-environment may imply that gentle
bottom currents were present in the basin, possibly in the form
of a western boundary current.
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